2022
DOI: 10.52842/conf.caadria.2022.2.485
|View full text |Cite
|
Sign up to set email alerts
|

PlacemakingAI : Participatory Urban Design with Generative Adversarial Networks

Abstract: Machine Learning (ML) is increasingly present within the architectural discipline, expanding the current possibilities of procedural computer-aided design processes. Practical 2D design applications used within concept design stages are however limited by the thresholds of entry, output image fidelity, and designer agency. This research proposes to challenge these limitations within the context of urban planning and make the design processes accessible and collaborative for all urban stakeholders. We present P… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…These methods encompass the generation of design intent data, the integration of ML/AI, artificial neural networks (ANN) and deep learning in architectural design, and sustainable urban management in terms of energy efficiency, energy consumption, and infrastructure connectivity, as well as the utilization of ML as a tool at the intersection of art and architecture [37,41,43]. Moreover, the analysis of 2D and 3D data in generative design and the application of AI and ML in sustainable living spaces, urban policies and landscape design [41,43,44], and architectural plan generation [45], including the integration of ML into architectural education [14,[46][47][48][49][50][51][52] and conservation of architectural heritage [53], are also important fields of research. In addition, ML methods have been utilized to forecast carbon emissions during the design stage, as well as to generate design choices for building design with regard to comfort and performance [49,54,55].…”
Section: Machine Learning For Wind Estimation In Built Environmentmentioning
confidence: 99%
“…These methods encompass the generation of design intent data, the integration of ML/AI, artificial neural networks (ANN) and deep learning in architectural design, and sustainable urban management in terms of energy efficiency, energy consumption, and infrastructure connectivity, as well as the utilization of ML as a tool at the intersection of art and architecture [37,41,43]. Moreover, the analysis of 2D and 3D data in generative design and the application of AI and ML in sustainable living spaces, urban policies and landscape design [41,43,44], and architectural plan generation [45], including the integration of ML into architectural education [14,[46][47][48][49][50][51][52] and conservation of architectural heritage [53], are also important fields of research. In addition, ML methods have been utilized to forecast carbon emissions during the design stage, as well as to generate design choices for building design with regard to comfort and performance [49,54,55].…”
Section: Machine Learning For Wind Estimation In Built Environmentmentioning
confidence: 99%