The fetus depends on the transplacental transfer of vitamin D. Calcifediol (25-OH-D3) is the vitamin D metabolite that crosses the placenta. Previously, oral 25-OH-D3 improved serum 25-OH-D3 compared to vitamin D3 in non-pregnant subjects, although no studies are available in pregnant women. We evaluated the availability of oral 25-OH-D3 compared to vitamin D3 during pregnancy, as well as, their levels in the fetus and effect on metabolism-related proteins. Twenty female rats per group were fed with 25 μg/kg of diet of vitamin D3 (1,000 UI vitamin D/kg diet) or with 25 μg/kg diet of 25-OH-D3. We analyzed 25-OH-D3 levels in maternal and fetal plasma; protein levels of vitamin D receptor (VDR), fatty acid translocase (FAT), and scavenger-receptor class B type-1 (SR-B1) in both maternal liver and placenta; and protein levels of VDR and Glutamate decarboxylase (GAD67) in fetal brain. 25-OH-D3 doubled the concentration of 25-OH-D3 in both maternal and fetal plasma compared to vitamin D3. In addition, maternal liver VDR, FAT, and SR-BI increased significantly in the 25-OH-D3 group, but no changes were found in the placenta. Interestingly, 25-OH-D3 decreased GAD67 expression in the fetal brain and it also tended to decrease VDR (P = 0.086). In conclusion, 25-OH-D3 provided better vitamin D availability for both mother and fetus when administered during pregnancy compared to vitamin D3. No adverse effects on pregnancy outcomes were observed. The effects of 25-OH-D3 on the expression of VDR and GAD67 in fetal brain require further investigation.