Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth's climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface. T he coastal interface, where the land and ocean realms meet (e.g., estuaries, tidal wetlands, tidal rivers, continental shelves, and shorelines), is home to some of the most biologically and geochemically active and diverse systems on Earth 1. Although this interface only represents a small fraction of the Earth's surface, it supports a large suite of ecosystem services,