2021
DOI: 10.48550/arxiv.2108.13740
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Plan-then-Generate: Controlled Data-to-Text Generation via Planning

Abstract: Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, we propose a novel Plan-then-Generate (PlanGen) framework to improve the controllability of neural data-totext models. Extensive experiments and analyses are conducted on two benchmark datasets, ToTTo and WebNLG. The results show that our model is able to control bo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 44 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?