We present the recent developments of the Scanning Tomographic Acoustic Microscope (STAM). The STAM was proposed as a method to achieve 3D imaging capability for the Scanning Laser Acoustic Microscope (SLAM). With the addition of a quadrature receiver, the complex scattered wave field can now be detected, and consequently the STAM is capable of subsurface holographic and tomographic imaging. The resolution improvement of the STAM can be attributed directly to the detection of the phase information and the image reconstruction technique. The STAM is sensitive to phase errors in the tomographic projections. In particular, the quadrature phase error and the initial phase error in the complex projections are critical to the tomographic reconstruction process. For multiple-angle tomography, high-precision projection registration and alignment become necessary. By obtaining solutions to these implementation problems, we have succeeded in obtaining images superior to the original SLAM images. In addition, quantitative ultrasonic imaging is possible with the STAM, and a method is presented to image the velocity parameter of simple specimens. With these capabilities, the STAM may become a useful tool for high-resolution subsurface nondestructive evaluation.