The development of the plastic and viscoelastic properties and the corresponding failure limits of the acetal homopolymer polyoxymethylene were studied in unidirectional cyclic fatigue. Samples with molecular weights (MWs) ranging from 90 to 142 kg/ kmol were tested in displacement-controlled conditions, resulting in maximum stress amplitudes between 30 and 59 MPa and strain amplitudes between 35.8 and 92.6 le. The zero-hour material properties and the cycle-dependent property development were predominantly dictated by deformations in the crystalline regions and showed a negligible dependence on MW. However, the final failure limits were found to be primarily dependent on the length of the amorphous tie chains that connect the crystallites. As such, fatigue life analysis showed a strong dependence on MW. Results are interpreted in light of the primary mechanical failure mechanisms and the corresponding molecular deformations.