2024
DOI: 10.3233/ia-240036
|View full text |Cite
|
Sign up to set email alerts
|

Planning and learning to perceive in partially unknown environments

Leonardo Lamanna

Abstract: For applying symbolic planning, an agent acting in an environment needs to know its symbolic state, and an abstract model of the environment dynamics. However, in the real world, an agent has low-level perceptions of the environment (e.g. its position given by a GPS sensor), rather than symbolic observations representing its current state. Furthermore, in many real-world scenarios, it is not feasible to provide an agent with a complete and correct model of the environment, e.g., when the environment is (partia… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?