Sensemaking has been advocated as a core practice of science education to support students in constructing their own understanding through a prolonged trajectory. However, the field lacks a discussion of teaching strategies that can better support students as they develop in the trajectory of sensemaking, which includes four phases: initial engagement with a driving question related to a target phenomenon; identification of incoherence and insufficiency in existing understanding; exploration of multiple resources to help develop plausible explanations; and synthesis of solutions and application of new understanding to interpret the target phenomenon. With the view that students' scientific uncertainty, including conceptual and epistemic uncertainties, can motivate or drive the trajectory of sensemaking coherent with students' understanding, this multiple case study examined how two science teachers, one from South Korea and one from the USA, supported students to navigate their scientific uncertainties to shape a trajectory of sensemaking that is coherent to them. Transcripts of video recordings of classroom discourses and student‐created artifacts were analyzed. We identified the dynamic nature of students' scientific uncertainties in the four phases and the teaching strategies in each phase. Three main findings emerged from this study: (1) student uncertainty as a key not only to initiate the trajectory of sensemaking meaningfully but also to continuously develop the trajectory along a coherent pathway, (2) conceptual and epistemic uncertainties having different roles in building different phases of sensemaking, and (3) teaching strategies that support student navigation of scientific uncertainty that drives the trajectory of sensemaking.