Cloth manipulation by robots is gaining popularity among researchers because of its relevance, mainly (but not only) in domestic and assistive robotics. The required science and technologies begin to be ripe for the challenges posed by the manipulation of soft materials, and many contributions have appeared in the last years. This survey provides a systematic review of existing techniques for the basic perceptual tasks of grasp point localization, state estimation and classification of cloth items, from the perspective of their manipulation by robots. This choice is grounded on the fact that any manipulative action requires to instruct the robot where to grasp, and most garment handling activities depend on the correct recognition of the type to which the particular cloth item belongs and its state. The high inter-and intraclass variability of garments, the continuous nature of the possible deformations of cloth and the evident difficulties in predicting their localization and extension on the garment piece are challenges that have encouraged the researchers to provide a plethora of methods to confront such problems, with some promising results. The present review constitutes for the first time an effort in furnishing a structured framework of these works, with the aim of helping future contributors to gain both insight and perspective on the subject.