Drought is one of the major threats to common bean (Phaseolus vulgaris L.), affecting its growth and productivity and, thus, contributing to considerable losses in yield in many regions worldwide. The development of varieties tolerant of drought stress has, therefore, become one of the primary goals in many common bean breeding programs. Plants have developed various mechanisms of their adaptation, to a greater or lesser extent, to drought. These are expressed, on the molecular level, by changes of gene expression and of protein content, together with responses at physiological and morphological levels. The response of common bean to drought is still not sufficiently well characterized due to its genetic complexity and its diverse, often ambiguous, phenotypic effects. Understanding these mechanisms is thus of fundamental importance for developing varieties that are better adapted to such stress conditions. In this chapter, we present research that provides an insight into the morpho-physiological adaptation and its underlying molecular changes in common bean plants exposed to drought. We include our contribution to establishing the basis for breeding of common bean with greater tolerance to this abiotic stress that uses molecular markers and identification of quantitative trait loci (QTLs).