Disturbances by fossorial mammals are extremely common in many ecosystems, including the California annual grassland. We compared the impact of juveniles of four common plant colonizers (Aegilops triuncialis, Cerastium glomeratum, Aphanes occidentalis and Lupinus bicolor) on the pools and fluxes of N in mounds created by pocket gophers (Thomomys bottae Mewa). The mechanisms and magnitude of biotic N retention differed among plant species. In mounds colonized by Cerastium, Aphanes and Lupinus, the microbial N pool was significantly larger than the plant N pool, as is typical in California grasslands in the early spring, whereas in mounds colonized by Aegilops, there was a more equal distribution of biotic N between plant and microbial pools. A 1-day 15 N pulse field experiment demonstrated that plant species significantly differed in their effects on the distribution of isotopic N, with the N-fixing Lupinus leaving most (82%) 15 N as inorganic N in soil, whereas more 15 N was immobilized in plants or otherwise removed from the available soil pool in mounds colonized by other species. The impacts of early colonizers on N dynamics suggest that the identity of plant species that initially colonize gopher mounds may have important consequences on the dynamics of the overall grassland community.