Associated with the introduction of alien species in a new area, interactions with other native species within the recipient community occur, reshaping the original community and resulting in a unique assemblage. Yet, the differences in community assemblage between native and invaded ranges remain unclear. Mediterranean grasslands provide an excellent scenario to study community assembly following transcontinental naturalisation of plant species. Here, we compared the community resemblance of plant communities in Mediterranean grasslands from both the native (Spain) and invaded (Chile) ranges. We used a novel approach, based on network analysis applied to co-occurrence analysis in plant communities, allowing us to study the co-existence of native and alien species in central Chile. This useful methodology is presented as a step forward in invasion ecology studies and conservation strategies. We found that community structure differed between the native and the invaded range, with alien species displaying a higher number of connections and, therefore, acting as keystones to sustain the structure within the invaded community. Alien species acting like keystones within the Chilean grassland communities might exacerbate the threat posed by biological invasions for the native biodiversity assets. Controlling the spread of the alien species identified here as keystones should help managing potential invasion in surrounding areas. Network analyses is a free, easy-to-implement and straightforward visual tool that can be widely used to reveal shifts in native communities and elucidate the role of multiple invaders into communities.