Degradation and utilization of protein by Prevotella ruminicola B1(4), a proteolytic bacterium that is prominent in the rumen, was examined. In preliminary experiments, proteinaceous N sources produced faster growth rates than did NH4Cl, based on changes in optical density over time. However, ammonium chloride produced a greater maximum cell density than did proteinaceous N sources. Of the proteinaceous N sources, an enzymatic hydrolysate of soybean protein with a relative peptide size of 3 AA residues produced a greater growth rate and maximum cell density compared with the other proteinaceous N sources. Further experiments revealed that P. ruminicola B1(4) grew faster and to a greater final dry weight with soybean protein than with casein. Degradation of both proteins was low as was indicated by the slow disappearance of soluble protein, low concentrations of free AA and peptides, and the decrease in ammonia concentrations over time. Patterns of degradation did differ between the two proteins, however. Accumulation of peptides and free AA from soybean protein peaked 2 h earlier than those from casein, and concentrations of free AA and peptides from soybean protein were lower on average than those from casein. Prevotella ruminicola B1(4) preferentially utilized Asp, Ile, Leu, Lys, and Arg from soybean protein compared with casein. The relative size of peptides that accumulated from both proteins, as determined by the ratio of ninhydrin reaction after HCl hydrolysis to ninhydrin reaction before HCl hydrolysis, suggested that part of the proteolytic activity of P. ruminicola B1(4) is a dipeptidase. Our findings suggest that P. ruminicola may have a greater impact on peptide degradation than on protein degradation in the rumen.