This study aimed to (i) evaluate purple nonsulfur bacteria (PNSB) strains possessing the highest phosphorus (P) solubilizing capacity in field and (ii) determine the efficacy of PNSB biofertilizers in improving soil quality, P uptake, growth, and yield of pineapple cultivated in acid sulfate soil (ASS). A field experiment was conducted in a completely randomized block design with two factors, including the first factor as P fertilizer levels (0, 50, 75, and 100% P) based on recommended fertilizer formula (RFF) and the second factor as supplementation of biofertilizers containing P solubilizing PNSB (no inoculated PNSB, Rhodobacter sphaeroides W48, R. sphaeroides W42, and a mixture of R. sphaeroides W48 and W42). The results indicated that the supplementation of PNSB biofertilizers led to an increase of 25.3–33.9% in soluble P concentration in soil compared to control treatment. Among the selected PNSB strains, R. sphaeroides W42 and a mixture of the PNSB in biofertilizers solubilized all insoluble P fractions (Fe-P, Al-P, and Ca-P) and strain W48 in biofertilizers for Fe-P and Al-P. Furthermore, the supplementation of biofertilizers from R. sphaeroides W48 and W42 individually and their mixture raised plant height by 3.56–4.10% and available P concentration by 25.3–33.9%. Total P uptake in pineapple treatments with biofertilizers from mixed PNSB was 42.9% higher than that in the control treatment (
p
<
0.05
). Application of mixed PNSB strains can reduce 25% P of chemical fertilizer, but the pineapple yield rose over 12.1%. Both R. sphaeroides W48 and W42 are potent for use as crop yield enhancers to obtain the sustainable pineapple cultivation under acidic stress.