Heat shock proteins (HSPs) have a significant role in protein folding and are considered as prominent candidates for development of heat-tolerant crops. Understanding of wheat HSPs has great importance since wheat is severely affected by heat stress, particularly during the grain filling stage. In the present study, efforts were made to identify HSPs in wheat and to understand their role during plant development and under different stress conditions. HSPs in wheat genome were first identified by using Position-Specific Scoring Matrix (PSSMs) of known HSP domains and then also confirmed by sequence homology with already known HSPs. Collectively, 753 TaHSPs including 169 TaSHSP, 273 TaHSP40, 95 TaHSP60, 114 TaHSP70, 18 TaHSP90 and 84 TaHSP100 were identified in the wheat genome. Compared with other grass species, number of HSPs in wheat was relatively high probably due to the higher ploidy level. Large number of tandem duplication was identified in TaHSPs, especially TaSHSPs. The TaHSP genes showed random distribution on chromosomes, however, there were more TaHSPs in B and D sub-genomes as compared to the A sub-genome. Extensive computational analysis was performed using the available genomic resources to understand gene structure, gene expression and phylogentic relationship of TaHSPs. Interestingly, apart from high expression under heat stress, high expression of TaSHSP was also observed during seed development. The study provided a list of candidate HSP genes for improving thermo tolerance during developmental stages and also for understanding the seed development process in bread wheat. The sessile nature of plants makes them vulnerable to various kinds of biotic and abiotic stresses. Plants have sophisticated mechanisms to recognize and respond to these stresses. High-temperature stress is common abiotic stress, which significantly reduces the crop yield worldwide. Simulation modeling has predicted that every 1 °C rise in temperature above 30 °C reduces the grain filling duration by 0.30-0.60% and grain yield by 1.0-1.6% 1. In response to high-temperature stress, plants synthesize many stress-responsive proteins including a family of proteins called heat shock proteins (HSPs). Enhanced production of HSPs has also been reported under other stress conditions like salinity, heavy metal, and drought 2,3. Some HSPs are also involved in the development of viral infections too, in both plants and animals 4,5. HSPs function as chaperones and assist in the refolding of denatured proteins, folding of nascent polypeptides and resolubilization of denatured protein aggregates 6,7. With increasing concerns about global warming and climate change, many laboratories across the world have used HSPs to create thermo-tolerant plants 8,9. There are reports describing the direct or indirect involvement of HSPs in different developmental stages of the plant 10. Various HSPs show tissue-specific and developmental stage specific