Internal transport systems are an essential part of intralogistics in production and distribution facilities. These are characterized by a variety of technologies as well as a multitude of interactions with other processes, such as warehouse, picking, and production processes. Therefore, resource planning and control of these systems is complex, especially for discontinuous conveyors. In this task, users can be supported by Digital Twins for decision-making, as they are suitable for investigating both future system states and possible actions. However, relevant use cases that are generally applicable across sectors as well as a generic system architecture for Digital Twins for resource planning and process control of in-plant transport systems have not yet been sufficiently investigated. In this paper, use cases are presented, relevant functions defined, and, finally, a generic functional and a logical reference architecture described. This is conducted with the design science in information systems research method together with a Systems Engineering approach. The use cases are determined at industrial partners of the research project TwInTraSys, which explores Digital Twins for the planning and control of internal transport systems. They are generalized and, thus, also applicable to other production and distribution facilities in different sectors. Further, the reference architecture can provide a basis for the successful implementation of the Digital Twin.