Vancomycin is an antibiotic used for severe infections. To ensure microbiological efficacy, a ratio of AUC/MIC ≥400 is recommended. However, there is significant interindividual variability in its pharmacokinetic parameters, necessitating therapeutic drug monitoring to adjust dosing regimens and ensure efficacy while avoiding toxicity. Population pharmacokinetic (PopPK) models enable dose personalization, but the challenge lies in the choice of the model to use among the multitude of models in the literature. We compared 18 PopPK models created from populations with the same sociodemographic and clinicobiological characteristics. Simulations were performed for a 47 years old man, weighing 70 kg, with an albumin level of 35.5 g/L, a creatinine clearance of 100 mL/min, an eGFR of 106 mL/min/1.73 m2, and receiving an intravenous infusion of 1 g × 2/day of VCM over 1 h for 48 h. Simulations of time–concentration profiles revealed differences, leading us to determine the probability of achieving microbiological efficacy (AUC/MIC ≥ 400) with each model. Depending on some models, a dose of 1 g × 2/day is required to ensure microbiological efficacy in over 90% of the population, while with the same dose other models do not exceed 10% of the population. To ensure that 90% of the patients are correctly exposed, a dose of vancomycin ranging from 0.9 g × 2/day to 2.2 g × 2/day is necessary a priori depending on the chosen model. These differences raise an issue in choosing a model for performing therapeutic drug monitoring using a PopPK model with or without Bayesian approach. Thus, it is fundamental to evaluate the impact of these differences on both efficacy/toxicity.