Background and objectives Monitoring N-terminal pro-B-type natriuretic peptide (NT-proBNP) may be useful for assessing cardiovascular risk in dialysis patients. However, its biologic variation is unknown, hindering the accurate interpretation of serial concentrations. The aims of this prospective cohort study were to estimate the within-and between-person coefficients of variation of NT-proBNP in stable dialysis patients, and derive the critical difference between measurements needed to exclude biologic and analytic variation.Design, setting, participants, & measurements Fifty-five prevalent hemodialysis and peritoneal dialysis patients attending two hospitals were assessed weekly for 5 weeks and then monthly for 4 months between October 2010 and April 2012. Assessments were conducted at the same time in the dialysis cycle and entailed NT-proBNP testing, clinical review, electrocardiography, and bioimpedance spectroscopy. Patients were excluded if they became unstable.Results This study analyzed 136 weekly and 113 monthly NT-proBNP measurements from 40 and 41 stable patients, respectively. Results showed that 22% had ischemic heart disease; 9% and 87% had left ventricular systolic and diastolic dysfunction, respectively. Respective between-and within-person coefficients of variation were 153% and 27% for weekly measurements, and 148% and 35% for monthly measurements. Within-person variation was unaffected by dialysis modality, hydration status, inflammation, or cardiac comorbidity. NT-proBNP concentrations measured at weekly intervals needed to increase by at least 46% or decrease by 84% to exclude change due to biologic and analytic variation alone with 90% certainty, whereas monthly measurements needed to increase by at least 119% or decrease by 54%.
ConclusionsThe between-person variation of NT-proBNP was large and markedly greater than within-person variation, indicating that NT-proBNP testing might better be applied in the dialysis population using a relativechange strategy. Serial NT-proBNP concentrations need to double or halve to confidently exclude change due to analytic and biologic variation alone.