The range and maturity of commercially useful laser applications are illustrated by selected examples. Macroscopic applications (commercialized or potentially so in the near future) include cutting, machining and welding metals, cutting fabrics, shock hardening of steels, nitrogenization of iron, and laser drilling through rock. Microscopic applications include drilling micro-holes for cooling of jet engine turbine blades, thin film growth, precision machining of structures inside transparent materials and inertially-confined deuterium-tritium fusion. To be commercially useful, these applications take advantage of the special properties of laser light, such as monochromaticity, high brightness, high pulse energy or intensity, wavelength range from soft xray to far infrared and pulse duration from femtoseconds to CW. This talk will be divided into three sections: (a) summary of the theory of laser-materials interactions with examples from published laser impulse production studies, (b) macroscopic applications, (c) microscopic applications and (d) exotic and futuristic applications, including a diode-laser-driven .tN thruster for micro-and nano-satellites, and proposals to use lasers to clean hundreds of thousands of small but hazardous space debris from near-Earth space and to launch 5kg payloads into near-Earth orbit.