Solution plasma is a gas-phase discharge in the vapor bubbles in a solution and has the potential to efficiently produce H2 by decomposing aqueous alcohols. However, the mechanism of alcohol decomposition in solution plasma remains unclear. In this study, lower monohydric alcohols (methanol and ethanol, as well as 1- and 2-propanol) were treated in solution plasma, and in this paper, the gasification mechanism is discussed. The gases produced from these alcohols were mainly H2 and CO, with small ratios of C1–C3 hydrocarbons. Thus, the O/C ratio in the product gas was close to 1 for all alcohols, and most of the C atoms in the alcohols were bonded to O atoms. This excess of O atoms could have only come from water, suggesting a strong contribution of OH radicals from water for gasification. However, the C1–C3 hydrocarbons were produced solely by the decomposition of the alcohol. For both decomposition routes, possible reaction pathways are proposed that are consistent with the experimental facts such as the composition of the product gas and the intermediates detected.