There is a growing body of evidence that cumulative hyperglycemic exposure plays a central role in the development and progression of atherosclerotic cardiovascular disease in diabetic patients. Monosaccharides, such as glucose, fructose, and glyceraldehyde can react non-enzymatically with amino groups of proteins, lipids, nucleic acids to form senescent macromolecules termed advanced glycation end products (AGEs), whose formation and accumulation has been known to progress in diabetic patients, especially in those with a long history of disease. The sustained accumulation of AGEs could contribute to the phenomenon of metabolic memory or legacy effects observed in long-term follow-up clinical studies of diabetic patients. AGE modification alters the structural integrity and function of various types of macromolecules, and interaction of AGEs with a receptor for AGEs (RAGE) has been shown to evoke inflammatory and thrombotic reactions. Therefore, the AGE–RAGE axis is a novel therapeutic target of atherosclerotic cardiovascular disease in diabetic patients. In this paper, we briefly review the pathological role of AGEs and their receptor RAGE system in atherosclerotic cardiovascular disease, including peripheral artery disease and discuss the clinical utility of measuring AGEs in evaluating the severity of atherosclerosis in patients with diabetes.