Background
Thoracic aortic aneurysms (TAAs) develop through an asymptomatic process resulting in gross dilatation that progresses to rupture if left undetected and untreated. If detected, TAA patients are followed over time until the risk of rupture outweighs the risk of surgical repair. Current methodologies for tracking TAA size are limited to expensive computed tomography or magnetic resonance imaging, as no acceptable population screening tools are currently available. Previous studies from this laboratory and others have identified differential protein profiles for the matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs), in ascending TAA tissue from patients with bicuspid aortic valves (BAV), versus patients with idiopathic degenerative disease and a tricuspid aortic valve (TAV). Additionally, altered microRNA (miR) expression levels have also been reported in TAAs as compared to normal aortic tissue. The objective of the present study was to identify circulating factors within the plasma that could serve as potential biomarkers for distinguishing etiological subtypes of aneurysm disease.
Methods
Ascending TAA tissue and plasma specimens were obtained from BAV (n=21) and TAV (n=21) patients at the time of surgical resection. The protein abundance of key MMPs (-1, -2, -3, -8, -9) and TIMPs (-1, -2, -3, -4), and microRNAs (-1, -21, -29a, -133a, -143, -145) was examined using a multi-analyte protein profiling system or by quantitative PCR, respectively. Results were compared to normal aortic tissue and plasma obtained from patients without aortic disease (n=10).
Results
Significant (p < 0.05) differences in standardized miR-1 and miR-21 abundance between BAV and TAV aortic tissue samples and different tissue and plasma profiles of analyte differences from normal aorta where observed between the BAV and TAV groups. Linear regression analysis significant linear relationships in plasma and tissue measurements only for MMP-8 and TIMPs -1, -3 and -4 (p < 0.05). Receiver operator curve analysis revealed specific cassettes of analytes predictive of TAA disease. Relative to normal aorta, BAV proteolytic balance was significantly increased for MMP-1, -2 and -7, and for decreased MMP-8 and -9. In contrast, TAV proteolytic balance relative to normal aorta was significantly increased only for MMP-1 and decreased for MMP-8 and -9.
Conclusions
Taken together these unique data demonstrate differential plasma profiles of MMPs, TIMPs, and miRs in ascending TAA specimens from patients with BAV and TAV. These results suggest that circulating biomarkers may form the foundation for a broader platform of biomarkers capable of detecting the presence of TAA using a simple blood test and may also be useful in personalized medicine strategies to distinguish between etiological subtypes of TAAs in patients with aneurysm disease.