Background
Acute vertigo is a common presentation of inner ear disease. However, it can also be caused by more serious conditions, especially posterior circulation stroke. Differentiating between these two conditions by clinical presentations and imaging studies during the acute phase can be challenging. This study aimed to identify serum microRNA (miRNA) candidates that could differentiate between posterior circulation stroke and peripheral vertigo, among patients presenting with acute vertigo.
Methods
Serum levels of six miRNAs including miR-125a-5p, miR-125b-5p, miR-143-3p, miR-342-3p, miR-376a-3p, and miR-433-5p were evaluated. Using quantitative reverse-transcription polymerase chain reaction (RT-qPCR), the serum miRNAs were assessed in the acute phase and at a 90 day follow-up visit.
Results
A total of 58 patients with posterior circulation stroke (n = 23) and peripheral vertigo (n = 35) were included in the study. Serum miR-125a-5p (P = 0.001), miR-125b-5p (P < 0.001), miR-143-3p (P = 0.014) and miR-433-5p (P = 0.0056) were present at significantly higher levels in the acute phase, in the patients with posterior circulation infarction. Based on the area under the receiver operating characteristic curve (AUROC) only miR-125a-5p (0.75), miR-125b-5p(0.77), and miR-433-5p (0.71) had an acceptable discriminative ability to differentiate between the central and peripheral vertigo. A combination of miRNAs revealed no significant improvement of AUROC when compared to single miRNAs.
Conclusion
This study demonstrated the potential of serum miR-125a-5p, miR-125b-5p, and miR-433-5p as biomarkers to assist in the diagnosis of posterior circulation infarction among patients presenting with acute vertigo.