Nucleoside diphosphate kinases (NDPKs) are multifunctional proteins encoded by the nme (non-metastatic cells) genes, also called NM23. NDPKs catalyze the transfer of γ-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high-energy phosphohistidine intermediate. Growing evidence shows that NDPKs, particularly NDPK-B, can additionally act as a protein histidine kinase. Protein kinases and phosphatases that regulate reversible O-phosphorylation of serine, threonine, and tyrosine residues have been studied extensively in many organisms. Interestingly, other phosphoamino acids histidine, lysine, arginine, aspartate, glutamate, and cysteine exist in abundance but remain understudied due to the paucity of suitable methods and antibodies. The N-phosphorylation of histidine by histidine kinases via the two-or multi-component signaling systems is an important mediator in cellular responses in prokaryotes and lower eukaryotes, like yeast, fungi, and plants. However, in vertebrates knowledge of phosphohistidine signaling has lagged far behind and the identity of the protein kinases and protein phosphatases involved is not well established. This article will therefore provide an overview of our current knowledge on protein histidine phosphorylation particularly the role of nm 23 gene products as protein histidine kinases.