Background:
Acute myocardial infarction (AMI) is a common disease leading threat to human health around the world. Here we aimed to explore new biomarkers and potential therapeutic targets in AMI through adopting integrated bioinformatics tools.
Methods:
The gene expression Omnibus (GEO) database was used to obtain genes data of AMI and no-AMI whole blood. Furthermore, differentially expressed genes (DEGs) were screened using the “Limma” package in R 3.6.1 software. Functional and pathway enrichment analyses of DEGs were performed via “Bioconductor” and “GOplot” package in R 3.6.1 software. In order to screen hub DEGs, the STRING version 11.0 database, Cytoscape and molecular complex detection (MCODE) were applied. Correlation among the hub DEGs was evaluated using Pearson's correlation analysis.
Results:
By performing DEGs analysis, 289 upregulated and 62 downregulated DEGs were successfully identified from GSE66360, respectively. And they were mainly enriched in the terms of neutrophil activation, immune response, cytokine, nuclear factor kappa-B (NF-κB) signaling pathway, IL-17 signaling pathway, and tumor necrosis factor (TNF) signaling pathway. Based on the data of protein–protein interaction (PPI), the top 10 hub genes were ranked, including interleukin-8 (CXCL8), TNF, N-formyl peptide receptor 2 (FPR2), growth-regulated alpha protein (CXCL1), transcription factor AP-1 (JUN), interleukin-1 beta (IL1B), platelet basic protein (PPBP), matrix metalloproteinase-9 (MMP9), toll-like receptor 2 (TLR2), and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G). What's more, the results of correlation analysis demonstrated that there was positive correlation between the 10 hub DEGs.
Conclusion:
Ten DEGs were identified as potential candidate diagnostic biomarkers for patients with AMI in present study. However, further experiments are needed to confirm the functional pathways and hub genes associated with AMI.