Abstract. An approach employing ultrafast laser hybrid subtractive-additive microfabrication combining ablation, 3D nanolithography and welding is proposed for the realization of Lab-On-Chip (LOC) device. Single amplified Yb:KGW fs-pulsed laser source is shown to be suitable for fabricating microgrooves in glass slabs, polymerization of fine-meshes filter out of hybrid organic-inorganic photopolymer SZ2080 inside them, and, lastly, sealing the whole chip with cover glass into a single monolithic piece. The created microfluidic device proved its particle sorting function by separating 1 µm and 10 µm polystyrene spheres in a mixture. All together, this shows that fs-laser microfabrication technology is a flexible and versatile tool for the manufacturing of mesoscale multi-material LOC devices.