Abstract:A ring resonator is a basic component of traditional photonic integrated circuits (PIC), which has been, however, found difficult to be applied efficiently in high-compact plasmonic metal-insulator-metal (MIM) systems. Here, based on a plasmonic band-stop filter with a square ring resonator (SRR), a novel side-coupling method is introduced both numerically and theoretically to achieve a drop in the resonant wavelength in the SRR with considerable efficiency. By introducing the reflector structure, the performance can be appreciably improved. Besides, this structure also has potential for sensing and switching. Finally, a dual demultiplexer based on SRRs is realized at telecommunication wavelengths with comparable performance, which makes it possible to apply ring resonators in on-chip plasmonic wavelength division multiplex (WDM) networks. This work is valuable for PIC design, and will promote the on-chip plasmonic system progress.