Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna−reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates.plasmon | photocatalysis | nanoparticle | catalysis | aluminum I ndustrial processes depend extensively on heterogeneous catalysts for chemical production and mitigation of environmental pollutants. These processes often rely on metal nanoparticles dispersed into high surface area support materials to both maximize catalytically active surface area and for the most cost-effective use of expensive catalysts such as Pd, Pt, Ru, or Rh (1, 2). However, catalytic processes utilizing transition metal nanoparticles are often energyintensive, relying on high temperatures and pressures to maximize catalytic activity. A transition from extreme, high-temperature conditions to low-temperature activation of catalytically active transition metal nanoparticles could have widespread impact, substantially reducing the current energy demands of heterogeneous catalysis.Light-driven chemical transformations offer an attractive and ultimately sustainable alternative to traditional high-temperature catalytic reactions. Metallic plasmonic nanostructures are a new paradigm in photoactive heterogeneous catalysts (3-6). Plasmonic nanoparticles uniquely couple electron density with electromagnetic radiation, leading to a collective oscillation of the conduction electrons in resonance with the frequency of incident light, known as a localized surface plasmon resonance (LSPR). These resonances lead to enhanced light absorption in an area much larger than the physical cross-section of the nanoparticle, and such optical antenna effects result in strongly enhanced electromagnetic fields near the nanoparticle surface. An LSPR can be damped through radiative reemission of a photon, or nonradiative Landau damping with the creation of energetic "hot" carriers: electrons above the Fermi energy of the metal and/or holes below the Fermi energy. In this context, "hot" refers to carri...