for S m = 5 μm × 5 μm or S m = 10 μm × 10 μm. Further, the meta-lens exhibits a good dispersion tolerance over the wavelength range from 3.3 μm to 5 μm. The averaged detectivity enhancement over this spectrum range is around 3 times for S m = 5 μm × 5 μm and 2 times for S m = 10 μm × 10 μm. The angular response of the meta-lens integrated detector depends on the focal length. For a focal length of 73 μm, the AOV for a 5 μm × 5 μm photosensitive area is 4.0°. When the focal length is reduced to 38 μm, the AOV for a 5 μm × 5 μm photosensitive area increases to 7.7° and it reaches 15.4° for a 10 μm × 10 μm photosensitive area. For the inter-pillar distance to be 2 μm in our design, the influence of the coupling effect between the nano-pillars on the performance of the meta-lens is little. Therefore, the monolithic integration of a meta-lens provides us a promising way to enhance the performance of infrared photodetectors and even focal plane arrays.