Interference phenomena render tailoring propagation of electromagnetic waves by controlling phases of several scattering channels. Huygens element, being a representative example of this approach, allows enhancement of the scattering from an object in a forward direction, while the reflection is suppressed.However, a typical resonant realization of Huygens element employs constructive interference between electric and magnetic dipolar resonances that makes it relatively narrowband. Here we develop the concept of a broadband resonant Huygens element, based on a circular array of vertically aligned metal wires. Accurate management of multipole interference in an electrically small structure results in directional scattering over a large bandwidth, acceding 10% of the carrier frequency. Being constructed from non-magnetic materials, this structure demonstrates a strong magnetic response appearing in dominating magnetic multipoles over electric counterparts. Moreover, we predict and observe very highorder magnetic hexadecapole (M16-pole) and magnetic triakontadipole (M32-pole) with quality factors, approaching 6,000. The experimental demonstration is performed at the low GHz spectral range. Our findings shed light on a simple approach for engineering compact and open electromagnetic devices (antennas, directional reflectors, refractors, etc.) able to tailor wave propagation in a broadband domain, concentrate strong magnetic field, and generate high-order magnetic multipoles.