Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1.RGB | chromaticity | array | electron beam lithography D isplay technologies have been evolving toward vivid, fullcolor, flat-panel displays with high resolution and/or small pixel sizes, higher energy efficiency, and improved benefit/cost ratios. Some of the most popular current technologies are liquid crystal displays (LCD), laser phosphor displays, also known as electroluminescent displays, and light-emitting diode (LED)-based displays. A common characteristic of all color display technologies is the incorporation of various color-producing media, which can be inorganic, organic, or polymeric materials, into the device. These chromatic materials are chosen to produce the fundamental components of the color spectrum in additive color schemes such as the standard red-green-blue (sRGB) when illuminated by an internal light source or when an electrical voltage is applied.Inorganic chromatic materials have the potential to greatly extend the durability and lifetime of color displays. Inorganic nanoparticles have recently begun to be used in color displays in the form of quantum dot LEDs, which have excellent display lifetimes and industry-scalable, size-based, and material-based color tunability (1-3). However, obtaining blue colors from quantum dots has been challenging (4) owing to the requirement of synthesizing nanoparticles in the small size range required to achieve optical transitions in this wavelength range. Au nanoparticles can produce green and red colors based on their surface plasmon resonances (5), but shorter-wavelength hues are quenched because of interband transitions for wavelengths below 520 nm (6). Ag has also been investigated for display applications (7, 8), but although spectral features can be achieved across the visible region the material readily oxidizes (9, 10), requiring additional passivation layers.Al is potentially a highly attractive material for plasmon-based full-spectrum displays. Al is the third most abundant element in the earth's crust, beh...