In this study, a series of hybrid nanostructured photocatalysts P25/(NH4)xWO3 nanocomposites with the average crystallite size of P25 and (NH4)xWO3 of the sample was calculated to be about 30 nm and 130 nm, were successfully synthesized via a simple one-step hydrothermal method. The as-obtained samples was characterized by transmission electron microscopy (TEM), which implies that the P25/(NH4)xWO3 nanocomposites are fabricated with favourable nanosizd interfacial. The XPS results confirmed that the obtained sample consists of mixed chemical valences of W5+ and W6+, the low-valance W5+ sites could be the origin of NIR absorption. As revealed by optical absorption results, P25/(NH4)xWO3 nanocomposites possess high optical absorption in the whole solar spectrum of 200–2500 nm. Benefiting from this unique photo-absorption property and the synergistic effect of P25 and (NH4)xWO3, broad spectrum response photocatalytic activities covering UV, visible and near infrared regions on degradation of Rhodamine B have been realized by P25/(NH4)xWO3 nanocomposites. Meanwhile, the stability of photocatalysts was examined by the XRD and XPS of the photocatalysts after the reaction. The results show that P25/(NH4)xWO3 photocatalysts has a brilliant application prospect in the energy utilization to solve deteriorating environmental issues.