2023
DOI: 10.1016/j.rinp.2023.106733
|View full text |Cite
|
Sign up to set email alerts
|

Plasmonic sensor for rapid detection of water adulteration in honey and quantitative measurement of lactose concentration in solution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 25 publications
(1 citation statement)
references
References 81 publications
0
1
0
Order By: Relevance
“…DL learns rules for inputs and outputs from large amounts of data, enabling the construction of non-linear models for various applications. Deep learning optimization methods can be applied in the fields of metasurface device design, including sensor [22][23][24][25], demultiplexer [26,27], coupler [28,29], inferometer [30], etc, to improve their design efficiency.The use of neural networks to implement data-driven models provides a new approach for the design of electromagnetic structures [31][32][33][34][35][36], such as EIT [37], broadband absorption [38] and perfect absorption [39]. Deep learning uses neural networks to learn patterns in data, and after training and optimizing on a dataset of metasurfaces, neural networks can effectively predict the best metasurface design.…”
Section: Introductionmentioning
confidence: 99%
“…DL learns rules for inputs and outputs from large amounts of data, enabling the construction of non-linear models for various applications. Deep learning optimization methods can be applied in the fields of metasurface device design, including sensor [22][23][24][25], demultiplexer [26,27], coupler [28,29], inferometer [30], etc, to improve their design efficiency.The use of neural networks to implement data-driven models provides a new approach for the design of electromagnetic structures [31][32][33][34][35][36], such as EIT [37], broadband absorption [38] and perfect absorption [39]. Deep learning uses neural networks to learn patterns in data, and after training and optimizing on a dataset of metasurfaces, neural networks can effectively predict the best metasurface design.…”
Section: Introductionmentioning
confidence: 99%