Protein secretion of cells plays a vital role in intercellular communication. The abnormality and dysfunction of cellular protein secretion are associated with various physiological disorders, such as malignant proliferation of cells, aberrant immune function, and bone marrow failure. The heterogeneity of protein secretion exists not only between varying populations of cells, but also in the same phenotype of cells. Therefore, characterization of protein secretion from single cell contributes not only to the understanding of intercellular communication in immune effector, carcinogenesis and metastasis, but also to the development and improvement of diagnosis and therapy of relative diseases. In spite of abundant highly sensitive methods that have been developed for the detection of secreted proteins, majority of them fall short in providing sufficient spatial and temporal resolution for comprehensive profiling of protein secretion from single cells. The real-time imaging techniques allow rapid acquisition and manipulation of analyte information on a 2D plane, providing high spatiotemporal resolution. Here, we summarize recent advances in real-time imaging of secretory proteins from single cell, including label-free and labelling techniques, shedding light on the development of simple yet powerful methodology for real-time imaging of single-cell protein secretion.