There is a common misconception that aquatic macrophytes face significant challenges in wetland-based sewage treatment systems. This study aims to correct this perception by focusing on the crucial morphophysiological adaptations of aquatic macrophytes that enable them to thrive in wetland-based sewage treatment systems, particularly under environmental stress. These adaptations are vital for improving the efficiency and resilience of wastewater treatment processes, offering sustainable solutions in the face of variable environmental conditions and complex contaminant mixtures. The review emphasizes the role of macrophytes as natural engineers, capable of enhancing pollutant removal and system stability through their unique structural and functional traits. By understanding these adaptations, the review aims to guide the optimization of wetland design and management, ultimately contributing to more sustainable and effective wastewater treatment practices. The findings underscore the importance of species selection and the integration of nature-based solutions in environmental management, advocating for policies that support the use of macrophytes in modern wastewater management.