The analysis of stress concentration in geometrically heterogeneous smart structures is of great importance. In this study, by utilizing a recent constitutive model which considered both transformation and plasticity of shape memory alloys (SMAs), the stress concentration factor (SCF) in plates with circular cavities is investigated and the effect of phase transformation, saturation, and plasticity which may occur locally is studied. The results show that the conversion of the austenitic phase to the martensite leads to a reduction in SCF. After saturation of phase transformation at the stress concentration point, the SCF increases until the entire sheet enters the martensite phase. In the example under study, the SCF reaches 5.8 which is greatly higher than the elastic SCF. By entering the plastic region locally, the SCF reduces. Also, the modeling of sheets with more than one cavity has been done. It is concluded that extra hole, as a stress relief method, has a stronger effect on decreasing maximum stress concentration of shape memory alloys (considering transformation and plasticity) compared to purely elastic stress concentration studies.