The influence of the internal and external pressure subjected to the tube from dispersion-hardened aluminium alloy was investigated. The approach which combines methods of crystal plasticity and mechanics of deformable solid was used to explore the limits of elastic and plastic resistance. The mathematical model of plastic deformation includes balance equations for deformation defects with regard to the generation and annihilation of shear dislocations, vacancy and interstitial prismatic dislocation loops, and dislocations in dipole configurations of vacancy and interstitial types and also equilibrium equation, geometrical and physical relations between the deformations, displacements and stresses. It has been established that as the temperature increases, the limits of the elastic and plastic resistance decrease. Results of investigation demonstrate that the hardening the alloy by nanoparticles significantly improves the strength characteristics of the material.