Purpose
The human
PDZK1
gene is located in a genomic susceptibility region for neurodevelopmental disorders. A genome-wide association study identified links between
PDZK1
polymorphisms and altered visual contrast sensitivity, an endophenotype for schizophrenia and autism spectrum disorder. The PDZK1 protein is implicated in neurological functioning, interacting with synaptic molecules including postsynaptic density 95 (PSD-95),
N
-methyl-
d
-aspartate receptors (NMDARs), corticotropin-releasing factor receptor 1 (CRFR1), and serotonin 2A receptors. The purpose of the present study was to elucidate the role of PDZK1.
Methods
We generated
pdzk1-
knockout (
pdzk1-
KO) zebrafish using CRISPR/Cas-9 genome editing. Visual function of 7-day-old fish was assessed at behavioral and functional levels using the optomotor response and scotopic electroretinogram (ERG). We also quantified retinal morphology and densities of PSD-95, NMDAR1, CRFR1, and serotonin in the synaptic inner plexiform layer at 7 days, 4 weeks, and 8 weeks of age. Standard RT-PCR and nonsense-mediated decay interference treatment were also performed to assess genetic compensation in mutants.
Results
Relative to wild-type,
pdzk1
-KO larvae showed spatial frequency tuning functions with increased amplitude (likely due to abnormal gain control) and reduced ERG
b
-waves (suggestive of inner retinal dysfunction). No synaptic phenotypes, but possible morphological retinal phenotypes, were identified. We confirmed that the absence of major histological phenotypes was not attributable to genetic compensatory mechanisms.
Conclusions
Our findings point to a role for
pdzk1
in zebrafish visual function, and our model system provides a platform for investigating other genes associated with abnormal visual behavior.