We developed an imaging method utilizing the available RIs. We developed two types of real-time RI imaging systems (RRIS), one for macroscopic imaging and the other for microscopic imaging. The principle of visualization was the same, converting the radiation to light by a Cs(Tl)I scintillator deposited on a fiber optic plate (FOS). Many nuclides were employed, including 14C, 18F, 22Na, 28Mg, 32P 33P, 35S, 42K, 45Ca, 48V, 54Mn, 55Fe, 59Fe, 65Zn, 86Rb, 109Cd, and 137Cs.Since radiation can penetrate the soil as well as water, the difference between soil culture and water culture was visualized. 137Cs was hardly absorbed by rice roots growing in soil, whereas water culture showed high absorption, which could provide some reassurance after the Fukushima Nuclear Accident and could indicate an important role of soil in firmly adsorbing the radioactive cesium.28Mg and 42K, whose production methods were presented, were applied for RRIS to visualize the absorption image from the roots. In addition to 28Mg and 42K, many nuclides were applied to image absorption in the roots. Each element showed a specific absorption speed and accumulation pattern. The image analysis of the absorption of Mg is presented as an example. Through successive images of the element absorption, phloem flow in the aboveground part of the plant was analyzed. The element absorption was visualized not only in the roots but also in the leaves, a basic study of foliar fertilization.In the case of the microscopic imaging system, a fluorescence microscope was modified to acquire three images at the same time: a light image, fluorescent image, and radiation image. Although the resolution of the image was estimated to be approximately 50 μm, superposition showed the expression site of the transporter gene and the actual 32P-phosphate absorption site to be the same in Arabidopsis roots.