The effect of unilateral hearing loss on 2-deoxyglucose (2-DG) uptake in the central auditory system was studied in post-natal day 21 gerbils. Three weeks following a unilateral conductive hearing loss (CHL) or cochlear ablation (CA), animals were injected with 2-DG and exposed to an alternating auditory stimulus (1 and 2 kHz tones). Uptake of 2-DG was measured in the inferior colliculus (IC), medial geniculate (MG), and auditory cortex (fields AI and AAF) of both sides of the brain in experimental animals and in anesthesia-only sham animals (SH). Significant differences in uptake, compared to SH, were found in the IC contralateral to the manipulated ear (CHL or CA) and in AAF contralateral to the CHL ear. We hypothesize that these findings may result from loss of functional inhibition in the IC contralateral to CA, but not CHL. Altered states of inhibition at the IC may affect activity in pathways ascending to auditory cortex, and ultimately activity in auditory cortex itself. Altered levels of activity in auditory cortex may explain some auditory processing deficits experienced by individuals with CHL.