a b s t r a c tHuman pluripotent stem cells provide new tools for developmental and pharmacological studies as well as for regenerative medicine applications. Calcium homeostasis and ligand-dependent calcium signaling are key components of major cellular responses, including cell proliferation, differentiation or apoptosis. Interestingly, these phenomena have not been characterized in detail as yet in pluripotent human cell sates. Here we review the methods applicable for studying both short-and long-term calcium responses, focusing on the expression of fluorescent calcium indicator proteins and imaging methods as applied in pluripotent human stem cells. We discuss the potential regulatory pathways involving calcium responses in hPS cells and compare these to the implicated pathways in mouse PS cells. A recent development in the stem cell field is the recognition of so called "naïve" states, resembling the earliest potential forms of stem cells during development, as well as the "fuzzy" stem cells, which may be alternative forms of pluripotent cell types, therefore we also discuss the potential role of calcium homeostasis in these PS cell types.