We analysed 16 populations of Dactylorhiza majalis subsp. majalis from northern Poland, simultaneously utilizing both morphological and molecular data. Genetic differentiation was examined using five microsatellite loci, and morphological variation was assessed for 23 characters. At the species level, our results showed a moderate level of genetic diversity (A = 6.00; Ae = 1.86; Ho = 0.387; FIS = 0.139) which varied between the studied populations (A = 2.60–4.20; Ae = 1.68–2.39; Ho = 0.270–0.523; FIS = −0.064–0.355). A significant excess of homozygotes was detected in five population, while excess of heterozygotes was observed in four populations, but the latter values were statistically insignificant. Moderate, but clear between population genetic differentiation was found (FST = 0.101; p < 0.001). Considering pairwise‐FST and number of migrants among populations, we recognized three population groups (I, II, III), where the first could be further divided into two subgroups (Ia, Ib). These three groups differed with respect to gene flow values (Nm = 0.39–1.12). The highest number of migrants per generation was noticed among populations of subgroup Ia (8.58), indicative of a central panmictic population with free gene flow surrounded by peripatric local populations (Ib) with more limited gene flow. Geographic isolation, habitat fragmentation and limited seed dispersal are inferred to have caused limitations to gene flow among the three indicated population groups. There was a significant correlation between the morphological and genetic distance matrices. A weak but significant pattern of isolation by distance was also observed (r = 0.351; p < 0.05).