VPS13 are conserved lipid transporters with multiple subcellular localizations playing key roles in many fundamental cellular processes. While the localization and function of VPS13 have been extensively investigated in yeast and animals, little is known about their counterparts in plants, particularly regarding their role in stress response. In this study, we characterized AtVPS13M1, one of the four VPS13 paralogs of the flowering plant Arabidopsis thaliana. We show that AtVPS13M1 binds and transports glycerolipids with a low specificity in vitro. AtVPS13M1 interferes with phospholipids degradation in response to phosphate starvation, a nutrient stress that triggers a massive remodeling of membrane lipids. AtVPS13M1 is mainly expressed in young dividing and vascular tissues. Finally, we show that AtVPS13M1 is mainly located at the surface of mitochondria in leaves. Overall, our work highlights the conserved role in lipid transport of VPS13 in plants, reveals their importance in nutrient stress response and opens important perspectives for the understanding of lipid remodeling mechanisms and for the characterization of this protein family in plants.