1928
DOI: 10.1002/zamm.19280080502
|View full text |Cite
|
Sign up to set email alerts
|

Plastisches Knicken der Wandung von Hohlzylindern und einige andere Faltungserscheinungen an Schalen und Blechen

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
17
0
3

Year Published

1981
1981
2018
2018

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 68 publications
(23 citation statements)
references
References 1 publication
1
17
0
3
Order By: Relevance
“…For all practical purposes, it is the lowest positive eigenvalue, Λ 1 , which is of interest, and we shall focus our attention on this quantity; for simplicity of notation we shall refer to it as Λ. Since according to (8) the expression of Λ depends explicitly on a/b, it is useful to also use Λ * := σ * b 2 h/D as an alternative choice for the eigenvalues of (13) and (14); this will be subject to the same restrictions as stated above.…”
Section: A Numerical Studymentioning
confidence: 99%
See 1 more Smart Citation
“…For all practical purposes, it is the lowest positive eigenvalue, Λ 1 , which is of interest, and we shall focus our attention on this quantity; for simplicity of notation we shall refer to it as Λ. Since according to (8) the expression of Λ depends explicitly on a/b, it is useful to also use Λ * := σ * b 2 h/D as an alternative choice for the eigenvalues of (13) and (14); this will be subject to the same restrictions as stated above.…”
Section: A Numerical Studymentioning
confidence: 99%
“…When this applied load reaches a critical value, the plate undergoes elastic buckling circumferentially, a phenomenon referred to as elastic wrinkling in the literature. Geckler [8] provided a first approximate study of this problem by considering the plastic regime, and his work was then followed by many others (cf. [3, pp.…”
Section: Introductionmentioning
confidence: 99%
“…Geckeler [15] proposed a mathematical analysis for wrinkling behaviour in the deep drawing process without blankholder, using which, the critical stress and wrinkling wave number can be determined. Senior [16] extended Geckeler's results using an energy method, in his research, the circular flange was assumed as a one-dimensional beam, buckling occurred when the compressive stress in the circumferential direction reached a critical value.…”
Section: Introductionmentioning
confidence: 99%
“…。 以拉深零件中典型的球底件和平底件为例,按 照板料变形程度可以将零件分为传力区和变形 区 [8] ,而若以零件几何区域为标准可以分为法兰区 和悬空区(平底件为直壁区)。所以起皱缺陷也因此 可以分为外皱(法兰区起皱)和内皱(悬空区起皱) [9] 。 从拉深过程中板材的力学状态分析,外皱和内 皱均是板料在环向压应力的作用下由平面内变形变 为平面外的屈曲变形导致的分叉失稳,从而偏离基 本平衡路径进入次级平衡路径 [10] 。因而如何准确地 预测分叉点成了预测和控制起皱的关键因素。对于 外皱和内皱的研究,一个世纪来研究的思路大体相 同。通过理论研究,包括近似能量法和分叉理论(解 析能量法),得到起皱的临界压应力 [11] ,并逐渐从单 轴的一维求解发展至平面坐标系的二维求解 [12] 。而 后随着有限元分析技术的发展,以理论分析为基础 并借助数值模拟,最终进行试验验证成了一种行之 有效的研究方法 [13] …”
unclassified
“…于 1961 年系统地分析 了弹性稳定性理论,并以能量理论为基础推导了方 板受压时发生屈曲的临界状态公式。但是包括 GECKELER [11] 和 SENIOR [19] 以及 KAFTANOGLU [21] 在内的学者都是在一维的基础上推导出临界应力, 而这种预测只有在法兰区的宽度远小于板材的半径 时,预测结果才较为准确,所以 YU 等 [12] 通过建立 柱坐标系进行了二维的起皱预测,得到了板材发生 弹性屈曲和塑性屈曲的临界条件,并对塑性变形时 能够抑制起皱的最小压边力进行了计算。其柱坐标 系中临界起皱能∆U 以及塑性变形能∆T 的表达式在 后来的研究中得到了广泛应用,成为了通过能量法 则进行起皱预测的一个通用公式,其形式具体如下 ( ) …”
unclassified