Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Large igneous provinces (LIPs) have been linked to both surface and deep mantle processes. During the formation, tenure, and breakup of the supercontinent Pangea, there is an increase in emplacement events for both continental and oceanic LIPs. There is currently no clear consensus on the origin of LIPs, but a hypothesis relates their formation to crustal emplacement of hot plume material originating in the deep mantle. The interaction of subducted slabs with the lowermost mantle thermal boundary and subsequent return-flow is a key control on such plume generation. This mechanism has been explored for LIPs below the interior of a supercontinent (i.e., continental LIPs). However, a number of LIPs formed exterior to Pangea (e.g., Ontong Java Plateau), with no consensus on their formation mechanism. Here, we consider the dynamics of supercontinent processes as predicted by numerical models of mantle convection, and analyse whether circum-supercontinent subduction could generate both interior (continental) and exterior (oceanic) deep-mantle plumes. Our numerical models show that subduction related to the supercontinent cycle can reproduce the location and timing of the Ontong Java Plateau, Caribbean LIP, and potentially the Shatsky Rise, by linking the origin of these LIPs to the return-flow that generated deep mantle exterior plumes.
Large igneous provinces (LIPs) have been linked to both surface and deep mantle processes. During the formation, tenure, and breakup of the supercontinent Pangea, there is an increase in emplacement events for both continental and oceanic LIPs. There is currently no clear consensus on the origin of LIPs, but a hypothesis relates their formation to crustal emplacement of hot plume material originating in the deep mantle. The interaction of subducted slabs with the lowermost mantle thermal boundary and subsequent return-flow is a key control on such plume generation. This mechanism has been explored for LIPs below the interior of a supercontinent (i.e., continental LIPs). However, a number of LIPs formed exterior to Pangea (e.g., Ontong Java Plateau), with no consensus on their formation mechanism. Here, we consider the dynamics of supercontinent processes as predicted by numerical models of mantle convection, and analyse whether circum-supercontinent subduction could generate both interior (continental) and exterior (oceanic) deep-mantle plumes. Our numerical models show that subduction related to the supercontinent cycle can reproduce the location and timing of the Ontong Java Plateau, Caribbean LIP, and potentially the Shatsky Rise, by linking the origin of these LIPs to the return-flow that generated deep mantle exterior plumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.