In this study, the hybrid approach of the Quadrature Element Method (QEM) has been employed to generate solutions for point supported isotropic plates. The Hybrid QEM technique consists of a collocation method with the Galerkin finite element technique to combine the high accurate and rapid converging of Differential Quadrature Method (DQM) for efficient solution of differential equations. To present the validity of the solutions, the results have been compared with other known solutions for point supported rectangular plates. In addition, different solutions are carried out for different type boundary conditions, different locations and number of point supports. Results for the first vibration modes of plates are also tested using a commercial finite element code, and it is shown that they are in good agreement with literature.