Experiments using genetically engineered mice are regarded as indispensable to gaining a better understanding of the molecular pathophysiology in neuronal injury after subarachnoid hemorrhage (SAH). Therefore, mouse SAH models are becoming increasingly important. The circle of Willis perforation (cWp) model is the most frequently used mouse SAH model. We report and discuss the technical surgical approach, results, and difficulties associated with the cWp model, with reference to the existing literature. Our results largely confirmed previously published results. This model may be the first choice at present, because important pathologies can be reproduced in this model and most findings in the literature are based on it.
AbstractExperiments using genetically engineered mice are regarded as indispensable to gaining a better understanding of the molecular pathophysiology in neuronal injury after subarachnoid hemorrhage (SAH). Therefore, mouse SAH models are becoming increasingly important. The circle of Willis perforation (cWp) model is the most frequently used mouse SAH model. We report and discuss the technical surgical approach, results, and difficulties associated with the cWp model, with reference to the existing literature. Our results largely confirmed previously published results. This model may be the first choice at present, because important pathologies can be reproduced in this model and most findings in the literature are based on it.