Endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is up-regulated in the neointima of remodeling arteries and modulates vascular smooth muscle cell (VSMC) growth. Platelet-derived growth factor (PDGF) is the prototypic growth factor for VSMCs and plays a key role in vascular remodeling. Here, we sought to further define ESDN function in primary human VSMCs. ESDN down-regulation by RNA interference significantly enhanced PDGF-induced VSMC DNA synthesis and migration. This was associated with increased ERK1/2, Src, and PDGF receptor (PDGFR) phosphorylation, without altering total PDGFR expression levels. In binding assays, ESDN down-regulation significantly increased 125 I-PDGF maximum binding (B max ) to PDGF receptors on VSMCs without altering the binding constant (K d ), raising the possibility that ESDN regulates PDGFR processing. ESDN down-regulation significantly reduced ligand-induced PDGFR ubiquitination. This was associated with a significant reduction in the expression level of c-Cbl, an E3 ubiquitin ligase that ubiquitinylates PDGFR. Thus, ESDN modulates PDGF signaling in VSMCs via regulation of PDGFR surface levels. The ESDN effect is mediated, at least in part, through effects on PDGFR ubiquitination. ESDN may serve as a target for regulating PDGFR signaling in VSMCs.Vascular injury initiates a cascade of events that ultimately leads to vascular remodeling and often intimal hyperplasia. Vascular smooth muscle cell (VSMC) 2 proliferation and migration are key cellular events in this process. Platelet-derived growth factor (PDGF)-BB is released by platelets, endothelial cells, VSMCs, and inflammatory cells at the sites of vascular injury and is a particularly potent regulator of VSMC proliferation and migration (1). PDGF binding to PDGF receptor (PDGFR) in VSMCs leads to receptor dimerization, autophosphorylation, and activation of downstream signaling pathways, including MAPK. The ligand-bound receptor is internalized through the endocytotic pathway and may either recycle to the membrane or undergo ubiquitination and lysosomal degradation (2). A number of endogenous stimulatory and inhibitory regulators, including the E3 ubiquitin ligase, c-Cbl (3), tightly regulate the mitogenic stimulus by modulating the duration and intensity of the signal.We have identified endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN, also called CLCP1 or DCBLD2) as a marker and regulator of cell proliferation in vascular remodeling (4). ESDN is a transmembrane protein with a domain structure similar to neuropilins (5, 6). ESDN can be induced by PDGF-BB and serum and is highly expressed in the neointima of injured rat (5), mouse (4), and human (4) arteries. ESDN expression parallels cell proliferation in the vessel wall in vivo (4). Furthermore, ESDN is up-regulated in proliferating VSMCs, and ESDN overexpression inhibits VSMC growth (4). Here, we expand the scope of our previous studies to demonstrate that ESDN regulates PDGF-induced VSMC migration and inhibits PDGF signa...