Using a magnetic resonance imaging (MRI) contrast agent, MRI has made substantial contributions to glioma diagnosis. Metal-free MRI agents, such as the nano free radical nitric oxide (NO·) micelle, can overcome the inherent toxicity of metal-based agents in certain patient populations. However, the low spatial resolution of nano NO· micelle in MRI limits its clinical development. In this study, we pretreated platelets (PLTs) and loaded them with nano NO· micelles to synthesize NO·@PLT, which can overcome the low contrast and poor in vivo stability of nitroxide-based MRI contrast agents. The PLTs can serve as potential drug carriers for targeting and delivering nano NO· micelles to gliomas and thus increase the contrast in T1-weighted imaging (T1WI) of MRI. This drug carrier system uses the unique tumor-targeting ability of PLTs and takes advantage of the high signal presentation of steady nano NO· micelles in T1WI, thereby ultimately achieving signal amplification of glioma in T1WI. With the effect of PLTs-tumor cell adhesion, NO·@PLT has per-nitroxide transverse relativities of approximately 2-fold greater than those of free NO· particles. These features allow a sufficient NO·@PLT concentration to accumulate in murine subcutaneous glioma tumors up from 5 min to 2.5 h (optimum at 1.5 h) after systemic administration. This results in MRI contrast comparable to that of metal-based agents. This study established a promising metal-free MRI contrast agent, NO·@PLT, for glioma diagnosis, because it has superior spatial resolution owing to its high glioma-targeting ability and has significant translational implications in the clinic.