Accumulating evidence indicates that platelets play a critical role in the pathogenesis of experimental severe malaria (ESM) elicited by infection with Plasmodium berghei. Mice injected on day 1 of P berghei infection (early) with either anti-CD41 or anti-CD61 monoclonal antibodies (mAbs) exhibited significantly (P < .001) increased survival from ESM compared with infection controls, indicating that platelets function early in the disease. In contrast, groups of mice treated on days 4, 5, and 6 (late) with anti-CD41 mAb exhibited similar mortality as controls.Because platelet depletion by anti-CD41 mAb on day 4 of infection did not protect mice, and platelet adherence occurs on day 6, platelet adherence to endothelium is not required to mediate malarial pathogenesis. Few platelet microparticles were detected in the blood during the course of malaria, but large numbers of erythrocyte vesicles, microparticles, and debris were detected. The protective effect of early anti-CD41 mAb treatment was independent of the number of platelets, platelet microparticles, erythrocyte-platelet conjugates, and erythrocyte vesicles. Mice
IntroductionOne of the hallmarks of cerebral malaria, which is caused by infection with Plasmodium falciparum, is petechial hemorrhaging into the brain, indicating that platelets may play a crucial role in malarial pathogenesis. 1 Clinical studies of patients with P falciparum indicate a marked procoagulant state with consumption of clotting factors, the presence of fibrin dimers, and decreased levels of the anticoagulants protein C and S 2-4 ; the procoagulant state correlates with the development of severe malaria. Grau and colleagues 5 have proposed that platelet activation and adherence contributes to the development of severe malaria. Patients with severe falciparum malaria exhibit profound thrombocytopenia, and platelet accumulation in the brains of children who have succumbed to severe falciparum malaria is significantly higher than platelet accumulation in the brains of patients who died from other coma complications. [6][7][8][9] These clinical results in humans with malaria provide the impetus for parallel mechanistic studies in animal models. Extrapolation of results from mouse models of severe malaria must be cautious because the P falciparum species of the malarial parasite cannot be used in rodent models of severe malaria because they do not replicate in mouse erythrocytes, and there are also differences between rodents and humans. Nevertheless, direct evidence for the importance of platelets in malarial pathogenesis has come from the P berghei model of severe malaria. 10,11 CD41/CD61 (␣IIb/3 integrin heterodimer, also known as gpIIb/IIIa) is an important molecule in platelet biology and its major function is contributing to expansion of clot formation and platelet adhesion to the microvasculature. 12-14 Our previous studies indicate that platelet adhesion during experimental severe malaria (ESM) occurs primarily in venules within the pial microvasculature and that CD41 plays an imp...